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ABSTRACT

Several cases of wave motion without damping were solved to obtain

background information which would aid in solving cases of wav_ motion

with coulomb damping. The nonlinearities introduced by coulomb damping

could be linearized so that they could be solved by using Laplace Trans-

forms for the following cases: semi-infinite rod with a step stress

impulse loading and a square wave stress impulse loading for T _ dc

and T = O_/2c; and a finite rod with a step stress impulse loading.
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CHAPTER I

Introduction

Although there have been numerous analyses published on wave

motion from many standpoints, no publications on wave motion with

coulomb damping have been uncovered. This treatise is an initial

attempt to analyze wave motions with coulomb damping, using Laplace

transforms as an aid in solving the partial differential equations.

Wave motion without coulomb damping is presented first to establish

the fundamental characteristics of wave motion. Then, tile solutions

which were successfully obtained of wave motion with coulomb damping

are presented.

in the _L_L_L on wave moLiuu W_L_UUL'_......UUU_Umu_.... damping, semi-

infinite and finite rods are considered. For the semi-infinite rod,

three types of impulse loadings are analyzed: step stress, square

wave stress, and step velocity. The finite rod is analyzed for the

right end boundary conditions of free and fixed. Impulse loadings of

step stress, square wave stress, square wave velocity and triangular

wave stress are considered for the free right end condition, and

square wave stress and triangular wave stress for the fixed right end

boundary condition.

In the chapter on wave motion with coulomb damping, only a few

cases are solved because of the difficulty in obtaining solutions;

however, both the semi-infinite rod and finite rod are considered.



For the semi-infinite rod, impulse loadings of step stress and square

wave stress for ¢ = _/2c and ¢ _ _/c are analyzed, and for the finite

rod, a step stress is analyzed.

In Chapter V the effects of friction-induced wave motion are pre-

sented for the inducing wave propagation velocities of twice, equal to,

and one-half of the propagation velocity of the induced wave. In the

last chapter, the advantages and disadvantages of the Fourier trans-

form technique as applied to wave motion are presented.



CHAPTERII

Previous Work

Although almost every book dealing with dynamics, vibration, elas-

ticity, mechanics or physics devotes somespace to wavemotion without

damping, nothing seemsto be available on wave motion with coulomb

damping. Someof ....Lneworks used as background information for the pre-

paration of this analysis were Jacobsenand AyreI, Timoshenkoe,

Burton3, and Tong4. The technique of solving the wave equation using

Laplace transforms was obtained from Wylie s and Norwacki6. The method

of variation of parameters for solving someof the nonhomogeneousdif-

ferential equations was obtained from Ke!!s 7. The Laplace transforma-

tions were taken from the tables and principles of Tse, Morse and

Hinkle s and from the tables of the CRC Standard Mathematical Tables 9

Some of the material reviewed as background information on

Fourier transforms was Sneddon l°, Hildebrand 11 and Erdelyi, et a112.

Transformation tables of Fourier cosine transforms were obtained from

Sneddon I° and Erdelyi, et al. 12

Since no material was available on wave motion with coulomb damp-

ing, this work was generated from the collective background information

of the bibliography. However, some work has been done on wave motion

with various types of internal damping. Narwocki 6 and Goldsmith 13 are

excellent examples of those who have performed analyses of wave

motion with visco-elastic damping.
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CHAPTERIII

WaveMotion Without Damping

Wavemotion is considered in this report only for a continuous

elastic system which is covered by partial differential equations.

The media are assumedto follow Hooke's law and are homogeneousand

isotropic. The treatise will be limited to one-dimensional wave

motion in prismatic bars where the length of the wave is large com-

pared to the cross-sectional width. The cross-sectional planes are

assumedto remain plane and for this chapter, damping is neglected.

A. WaveEquation Formulation

Consider the prismatic bar in figure i. Let T be the force

acting on the cross section at someposition x, and at x + dx the
_T

force is T + _x dx. Using Newton's law of motion, we obtain

I Pext = m_

_u

-T + T + _x dx = pA dx _ , (i)



where O is the mass density, A is cross-sectional area, and u is the

displacement. The force at the cross section is proportional to the

strain (Hooke's %aw); i.e.,

where E is Young's Modulus of Elasticity. For a prismatic bar that is

homogeneous and isotropic,

hT h 2,,

_ = AE

and substituting into equation (i) yields

_2U _2U

b2u I b2u
- = 0, (2)

where c =_/p. The general solution to equation (2) can be expressed

as

u = f(ct - x) + g(ct + x),

and regardless of the functions f and g, the argument (ct ± x) leads

to the differential equation upon differentiating and substituting.

Then, for u = f(0),

x
C "_" --

t '

which demonstrates that c is the wave propagation velocity.
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B. Semi-Infinite Rod

This rod begins at x = 0 and extends in the positive x direction

to infinity. It is an ideal rod used for mathematical purposes to

give wavemotion that is undisturbed by a boundary.

i. Step Stress Impulse Loadin_

The Laplace transform technique is used to obtain a solution

to equation (2) because the solution for transient type impulse is

desired, and these solutions are easier to obtain using Laplace trans-

forms. To solve equation (2), two boundary conditions and two ini-

tial conditions must be kno_. For example, let the displacement,

u(x,t), and the velocity, ut(x,t), be zero at t = 0. Also, let a

step stress impulse loading be applied to the semi-infinite rod.

This means that the two boundary conditions are as follows: (I)

-T
Ux(0,t ) = _ H(t) where T is the applied load, and H(t) is the

Heaviside Function (when the argument t > 0, H(t) = I and when t < 0,

H(t) = 0) and (2) as x _, u(x,t) is bounded. Taking the Laplace

transformation of equation (2) with respect to t yields

_2c(x,s) s e s u(x,o) + _ ut(x,O) = o,bx_ - c-_ u(x,s) + ¢-_

where s is the new variable. Since the initial conditions are zero,

then

_2U(x,s) s2
_x2 - c-_ _(x,s) = o.



This equation is an ordinary second order differential equation that

has a solution of

s s
--x - --x

U(x,s) = Ble c + Be e c

Since as x -+_, u(x,t) is bounded, then B I = O; therefore,

s
_ X

c
U(x,s) = Bee

s
_ X

_U(x,s) s c
= -B 2 -- e

_x c

Applying the other boundary condition, i.e.,

u (0,t) = -T H(t)
2_ fir.

or

-T
u(0,_) = _ ,

yields

T s Tc

AEs -B2 c or Be = _

x

Tc c

U(x,s) = _ e

Taking the inverse transform gives a solution to the partial differ-

ential equation.

Tc (t x x= . 7),u(x,t) _ c) H(t -



Essential to the understanding of wave motion is the velocity and

strain distribution of the rod. These can be obtained by taking the

partial derivatives with respect to t and x; i.e.,

_u Tc H(t - x
_'_ = A-E c )

_u T x

= - _ H(t - -i)-7x

The distribution of displacement, velocity and strain for various

times, ti, is shown in figure 2. A step stress input yields a step

velocity and strain but a ramp-type displacement. Also, the dis-

placement cannot be discontinuous like the velocity and strain,

because a discontinuity would indicate a break in the rod.

2. Square Wave Stress Impulse Loading

Let the initial conditions be zero. At t = 0, a stress is

applied at x = 0 until t = T. Then the stress is zero at x = 0;

i.e.,

u (0,t) = ----r[H(t)- H(t-
x AE "

(3)

Equation (2), the differential equation to be solved, has the general

solution of

S S
-- IK - --X

U(x,s) = Bl ec + Be e c



_t

For a semi-infinite rod, B 1 = 0, and

S

s c
Ux(X,S) = -B2 [ e (4)

Taking the Laplace transform of equation (3) and substituting into

(4) for x = 0 yields

T (i - e-TS) s or B 2 Tc -Ts
" AE'--_ = -Be c = _ (i - e )

S
- _ X

Tc -Ts. c
U(x,s) = _ (i - e ) e

Tc I x x x x]u(x,t) --_f (t-7) H(t-7) - (t- T-7) H(t- _-7)

3u = T VH(t -
_x -A-_L 7) - H(t- _x)]

The distribution of displacement, velocity and strain is shown in

figure 3. The square wave stress input yields a square wave velocity

and strain but a ramp wave front on the displacement _hich is constant

after t = T.

3. Step Velocity Impulse Loading

For a semi-infinite rod with a step velocity at x = 0, the

end condition is

ut(0,t)= vH(t). (5)



i0

With the initial conditions zero, the solution to equation (2) is

s
" -- X

c

U(x,s) = B2e . (6)

Taking the Laplace transform of equation (5) with the initial condi-

tions equal to zero and substituting into equation (6), for x = 0,

we obtain

V

s--_ = B2

s
" _ X

V c
---- -- eU(x,s) s2

x x

u(x,t)--v(t - 7) H(t - 7)

x

ut(x,t)= vH(t - _)

-- 7).Ux(X,t ) = vc H(t - x

These distributions are shown in figure 4. It is interesting to

note the simularity of the distributions for a step stress and a

step velocity.

This section illustrates the characteristics of wave motion

in its simplest form to form a basis for the analysis of the more

complex wave motion which is to follow. An understanding of these

simpler forms simplifies the understanding of the more complex and

allows the individual to estimate the behavior of the more complex

wave motion.
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C. Finite Rod

Although the finite rod has a few of the characteristics of the

semi-infinite rod, the finite rod exhibits unusual behavior at the

boundaries caused by the added phenomenonof reflection.

i. Right End Boundary Condition Free

The term "free" here means that the right end is unsupported,

and the stress at the end is zero unless a stress is specifically

applied.

a. Step Stress Impulse Loading to the Left End

A rod of length, _, has a compressive step stress applied

when t = 0 and at x = O; therefore, the boundary conditions are as

follows:

m

u (0,t) =- '-H(t) or U (0,s) =- T (7)
x AE x AEs

Ux(_ ,t) -- 0 or Ux (_'s) = O. (8)

The general solution to equation (2) for zero initial condition is

e'

s s
--x - --x

U(x,s) = B1e c + Be e c

s S
--x - --x

S c s c

Ux(x,s) --B1ce - Be--c e .



12

Substituting equation (7) with x = 0 and equation (8) with x =

gives

Tc

- A-_se = BI - Be

s_ s_
c c

0 = e B l - e Be •

ml =

2_

C

Tce and Be = 2_ s

Tc

u(x,s)=
Tc

Xs (. 2_+x

_- -_- _)se c +e J

Using the binomial expansion: yields

_ 2._._ s _ 4-._ s _ 6--_ s
c c c

i =l+e +e +e + ...
2_
_ S

C
i - e

Therefore,

x (__ x 4_ _ x- c)s (- "7- 7)s
- -- S

Tc c

U(x,s) = _ e + e + e

(continued on next page)

+ e

6_ x.
(- -V- 7)s

+...]
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c. _ ÷_" ¢. _ +_sc q- e
c

+_e c +e

and taking the inverse Laplace transform yields

C + ... ,

c

+

(9)

The velocity equation is x_

_- _ C

+I-1 " c
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and the strain equation is

(ii)

Shown in figure 5 is a representation of the displacement, strain and

velocity distributions at time, t = 0. At t = 0, the contributions of

each term of the above equations have not yet reached the rod; however,

as time increases, the displacement, velocity and strain waves move in

the directions of the arrows, and some of the waves immediately enter

the domain of the rod. Figure 5 is used as a step to obtain figure 6.

However, similar figures to figure 5 will not be shown in the solution

to other types of examples to follow, but should be understood as a

step that was taken but not shown.

To simplify the solutions which will follow, the equations will

be written in summation notation. Equations (9), (i0) and (ii) in

this notation would be as follows:

co

u(x't) = T'_'c_n_OI_tAE = - __2n_c" x) H _ t

c

co

2n_c 91 + I It . __2n_+x]c

n=l
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B I
O0 O0

C C '

n=0 n:l

oo oo

U (x,t)--X - --'-=-A_;T _l [H (t 2n_ _] " I [H (t . __+2n2 _] }C C "

n:0 n:l

It is advantageous to make some observations about fig-

ure 6 at _L:-t.I.L.L_Ipoint. Notice LLm................L L.= U J--_ _ J-_ lJ_Ul_ 11 L a[IQ veJ._ J.-y c:Qn-

tinue to increase while the strain fluctuates. The velocity at first

increases from the left where the load is applied due to a compressive

wave, then the velocity doubles at the right end and increases from

the right due to an expansive wave. The strain reaches a constant

value throughout the rod when the displacement is of a ramp shape

over the length of the rod. The strain is zero over the length of the

rod when the displacement is constant over the length of the rod.

b. Square Wave Stress Impulse Loading to the Left End

The square wave input is more realistic in practice than

the step input, because at some time_ T, after the stress has been

applied, the stress input ceases; therefore, the rod with a square

wave input does not continue to increase its velocity as it did with

a step input. Considering the same rod as before with zero initial

conditions and

u (0,t) = T [H(t)- H(t- T)] or Ux(0,s) =x " A-_ _T (e-TS - i)

U (_,t) = 0 or U (_,s) : 0,
X X
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the solution to the equation of motion (2) is

co

Tc {I [( t . ___2n_ x) H (t 2n_ x) - (t - TU = _ C C

n=O

2n.._

C 9

{t 2n_ 9] +2 [( t 2n_ +x} H (t 2n_H -T c -_ c

n=l

(t x} (t 2n_ x}l }
2n_ + H - T - -- +

- - T - -'_ C

with the corresponding velocity and strain distributions

oo

=--{l [ ( t 9 {t 2n_ 9]
Tc H 2n_ - H - T

ut AE c c

n=O

+Z [. (t- 2n_

n=l

9 {t 2ny, + 9] }+ -H -T-- 7- (12)

oO

Ux {nZ0I, 9_. 9]
oo

_ C

n=l

(_ _n_+9] }H " _--T- (13)

The velocity and strain distributions are shown in figures 7(a) and

(b) for • = _c" The velocity wave travels down the rod and doubles

at the right end. As the wave returns, it reduces to its original
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value. When it reaches the left end, the same wave motion occurs as

did at the right end. The strain wave travels along the rod until J.t

reaches the end, and then both ends of the wave go toward the middle

of the wave until the wave vanishes at cT/4 from the end of the rod.

After the wave vanishes, it reappears at the same position with the

opposite sign, and the wave expands until it has a width of _. When

it is the width of _, the strain wave has reached the end of the rod,

and the wave moves in the opposite direction from which it initially

moved. When the wave reaches the opposite end (x -- 0), the same wave

motion occurs at that end as did at the other end (x -- _).

Figure 8 illustrates the displacement distribution of the

square wave input of pulse duration, _ = 2_" When the wave reaches

the end of the rod (x -- _), the wave form changes. This is caused by

the interaction of the two ramp-shaped waves meeting at the end of the

rod. To give a further illustration of the displacement of the rods,

the displacement versus time is shown in figure 9 for three rod posi-

tions x = 0, _/2 and _. A rod when struck by a square wave of pulse

duration, _ --2_ does not move en masse, but only portions of the rod

move at one time, like a worm crawling. The ends of the rod move in

a similar manner with the end, x -- _, at a phase lag of t -- _/c to the

end, x = 0, while the middle moves only 1/2 the distance at one time,

but the times occur twice as often. The reason the ends move twice as

much as the middle is because a compressive wave moves down the rod tc

the end, x -- _, then converts to an expansive wave of the same magni-

tude, thereby causing a displacement twice that due to the original
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way e. This wave motion is not typical of nature in that nature seldom

applies a stress of wavelength T = _c" This will be illustrated next

with a square.wave velocity impulse loading.

¢. Square Wave Velocity Impulse Loading to the Left End

This example requires some forethought before the desired

solution can be obtained. If we wish to simulate the striking of a

golf ball, a baseball, or some other similar action, the duration of

the square wave is important. This pulse duration is generally the

time that it takes the pulse to go the length of the elastic body and

2_ Other pulse durations may be specifically
return; i.e., • =-_ .

applied, but in general, they are not true simulations of nature. To

illustrate this point, a solution will be obtained with a general

pulse duration width of T. The difficulty at this point is defining

the boundary condition a_ the end where the square wave velocity is

applied. When the velocity is applied, the end condition is defined

as

ut(0,t)= vH(t) or
V

u(0,s)= ,

where v is the applied velocity, and when the velocity is released,

the end condition is

(0,t) = 0 or U (0,s) = 0.
u x x
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It is difficult to apply this end condition in this form; however, if

the end condition could be totally defined in terms of Ux, then it

could be easily applied. This can be done by obtaining the solution

of a rod which is free on the right end and has a step velocity impulse

loading on the left end; i.e., let the initial conditions be zero, and

the boundary conditions be

V

ut(0,t) --vH(t) or U(0,s) --s-_

u (_,_) = 0 or Ux(_,s) = 0.x

The solution to the equation of motion, equation (2), is

U ----V

o0

{l(_l)n _t 2n_ _ H_t 2n_ _

n=O

00

_ l(_l)n _t. __+2nP,cx} H ( t . 2n____+X)}c "

n--1

The corresponding velocity and strain equations are

oo oO

Ut = v{_(_l)n H < t 2n_c x)-_(-l)n H <t " 2n'--_+X)}c

n=O n=l

v{Z ( ) Z(-I)n x)}u = - -- -I_ n H + H - -- + .
X C C C

n=0 n=l

(14)

These are shown in figure i0. The velocity, v, travels down the rod

and doubles at x = _. As the rod attains a velocity of 2v, the strain
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is being reduced to zero. Whenthe wave is returned to the origin,

the strain changessign and the velocity is reduced back to v. This

is because the boundary conditions require the velocity to be v at

x = 0. This is as though the input is attached to the rod. If the

input had not been attached to the rod, then the rod would have left

the input at a velocity twice the input velocity. The fact that the

strain changed signs indicated that the input was no longer pushing

but was pulling.

The objective of this exercise was to obtain an end con-

dition at x = 0 entirely in terms of uX. Therefore, using equation

(14) yields

= v _ (-i) n H 2 + (-i) n H 2(o,t)u

x c _

n=0 n=l

which is the boundary condition at x = 0. To limit this equation for

t _<-2_/c, we eliminate the summation and the latter Heaviside func-

tion. Thus we obtain the left end boundary condition while the

velocity input is applied:

Ux(0 ,t) = - Vc H(t).

To obtain the total left end boundary condition, this equation is

combined with ux(O,t ) = 0 (after the velocity input is removed) to

ob ta in

u (0,t) v H(t) - H(t - _) for _ =--.
x c c
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By us ing

tion,

this boundary condition with the right end boundary condi-

Ux(_,t) = 0,

and setting the initial conditions

equation of motion (2) is

equal to zero, the solution to the

oo

n=O
2n_ x) H _t 2n_ x) _tc c - T 2n_X)c

0o

(t 0ii I 02n_ $ i( t 2n_H - T + ---+
c _I_\ c

n=l

<t 2n_ x) _t 2n_ c)]}- - %---+ H - T---+
C C '

for T N 2_/c. For T = 2_/c which is generally characteristic of

nature, the equation reduces to

(15)

U = V

and the corresponding velocity and strain equations are

v 2_ x
u : - - H - -H - --+ .
X C C
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Figure ii shows the velocity and strain distributions. The velocity,

v, and strain, -v/c, traverse the rod, simultaneously. When the wave

reaches x = _, then it is reflected with the velocity equal to 2v,

while the strain is reduced to zero. When the wave reaches x = O,

then the rod leaves the input at a velocity of 2v and all wave motion

stops. To explain this phenomenon in terms of a golf club striking a

golf ball, we would need to assume that the club was rigid and did

not slow down while striking the ball. When the club strikes the

ball, a wave goes across the ball bringing the velocity of the ball

to the velocity of the club and putting a strain in the ball. As the

wave is reflected, the strain is relieving itself by pushing against

the club, thereby causing the velocity of the ball to reach twice

that of the club. It is now apparent why T = 2_/c is characteristic

of nature.

To get further information concerning the step velocity,

let T = _/2c, then equation (15) becomes

n=0

2n_ x_ _t (4n+l_ x_

_t (4n+l) _ x)] _ I_ tH " 2c - +

n=l

c c

_t (4n+l')_ x) _t (4n+l) _- - 2c + H - 2c
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with velocity and strain equations of

u
t

OO

= v H - - - H _ (4n+l _
c 2c

n=0

OO

+_ [H _t - 2n--_

n=l
+ x> - H _t - _4n+l)_ + x_]_2c

u
x

OO

r- _ i .

_i I _ 2n_ x_ Qt (4n+l)_ x_
=_v H t - H - -

c c 2c
n=O

),i( . __ (4n+l)_- H 2n_ + x - H -
c 2c

n=l

+

These equations are the same as that of the square wave strain input,

equations (12) and (13), with the exception of the constants in front

of the equations. Therefore, figures 7(a) and (b) are illustrations

of the velocity and strain distributions, and only the scales need to

be changed. Figure 8 is also applicable to the displacement.

d. Triangular Wave Impulse Loadin$ to the Left End

Consider the triangular wave shape shown in figure 12.

The wave shape may be expressed by the equation
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Therefore, the boundary conditions are

u (0,t) =- 4T_.__cH(t) - 2 - H - + - H -
x AE_

u (_,t) = 0.
x

With the initial conditions set to zero, then the solution to the

equation of motion is

2Tc e 2n_ H 2n_
U : A-_'- C C

n=0

x_" 2 <t - <8n+l)_ -X_4c

• H <t - (8n+l_Z4c " x_+ < t - (4n+l>_2c _ x_ H <t- (4n+l_l .x_]2c

oo

• -2n- c
n=l

• 2

x_S <t x_ <t (8n+l)_ + x>
+ H _ 2n._._+ - 2 -

c 4c

(4n+l) _ <4n+l )(8n+l) _ + + _ + H - +
• H - 4c '2c 2c '

with a velocity and strain of

= 4Tc e

n=0

_t (8n+i)%• H - 4c

2n_c x> H _t" 2n_- x_" 2 _ t"c _8n+l)_ .X>4c

" C> + <t - (4n+l)_ -X_2c H <t - <4n+1_)_2c . x_

(equation continued on next page)
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n=l

t @n+l)• H - 4c +X)+ <t <4n+l)I- 2C +X_H <t " (4n+l)_

4Tc
U ---- --

x AE_

oo

n--O
2n_c X)+ 2< t - (8n+l)_ "x)4c

<t (8n+l)_ x)_t (4n+l) _H - 4c - - - 2c x) H <t (4n+l)_

_ I<t- X)I . X) < (8n+l)_ x)
+ 2n_ + H t 2nl + -2 t - +

c c 4c

n=l

(8n+l)_ + x_ _f* _ (4n+l)_ , x_ ,, _\_ (4n+I)£, . x_.7 ],4c c) _' 2c _ cJ " 2c T -UJS"

The only difference between the velocity and strain equations is the

factor, c, and a sign change in the first group of terms. Figures 13

and 14 reveal the effects of this difference. The interesting thing

about these figures is the characteristics of the wave motion at the

boundaries. The velocity doubles at the same time the strain changes

sign. The displacement is shown in figure 15, and continues to

increase as expected. Notice the unusual wave front and its behavior

at the boundaries.
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2. Risht End Boundary Condition Fixed

The fixed right end boundary condition implies that the end

is rigidly clamped. The left end is allowed to move while the fixed

end can have no motion. Thus, the impulse loads will be applied to

the left end only.

a. Square Wave Stress Impulse Loading to the Left End

Of interest in this example is the wave shape at the

fixed end, x = _. In solving this example, the initial conditions

will be set to zero. The boundary conditions are

Gu (0,t)= T T e
x - A-_ [(H(t) - _(t - T)] or Ux(0,s) = AE -

u(I,t) = 0 or U(_,s) = 0.

Using these boundary conditions, the solution to the equation of

motion (2) is

oo

_I I_ t X_ _t X) < t 2n_ x_
Tc 2n_ H 2n_ _

h = _ (-i) n c c " c

n=O

_t 2n_• II - T - c

oo

X)l . l(_l)n I=_t . __2n_+X)c H _t = 2n===_+X_c

n=l

It 2n_ x_ _ t 2n_ x_l _+ - _---+ H - •---+ ,
C C
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with the corresponding velocity and strain being

oo

Tc {I I <t 2n_ x) <tu t = _ (-i) n H c - H -

n=0

oo

- H 2n_.__+ x_2<-,>mE-
_j

n=l
_t 2n_ x)]}

+H - T---+
C

co

u = T _T (_,_n [_. /_ 2nl x_ _ u f_ 2n# xhl

x AE L/," -" L " q- c c/ ' "" \- _ c =/j
n--O

n=l

(_l)n [_H <t 2n_ +_)+ H < t 2n_ + x)] }--_- -_-_ .

The velocity and strain distributions are shown in figures 16 and 17

^i_ ,. .i

for _ = _Izc. at erie fixed end, the velocity changes direction, and

the strain doubles itself; and at the free end, the strain changes

direction, and the velocity doubles itself. The displacement is

shown in figure 18. Notice the double slope when the wave reaches

fixed end.

b. Triangular Wave Stress Impulse Loading to Left End

Consider the triangular wave shape shown in figure 19.

This wave shape my be expressed by the equation

f(t) = T(I/T)[(T- t) H(t) - (T- t) H(t - 7)].
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Therefore, the boundary conditions are

u (0,t) = -T [(T- t) H(t) -
x AET

u(_,t)= 0.

(_- t) H(t - _)]

With the initial conditions set to zero, then the solution to the

equation of motion (2) is

oo

u = _{l(-l)n I_ _t

n=O

x) _t 2n_ x) l_t 2n__ 2n___. H " -7- " - i c

_t 2n_ x)_t x)_ t1 2n_ x)]
• H + 2n_ H - T

C _" - _ " C C

x)<t x),<t2n_ + H 2n_+ + _ - c" _-l-n "_ _ c

n=l

_t " -- x) I _t+ - 2 T 2n_ x) _t 2n_ x)] _
2n_ -- - - -- + H - • - -- +H
C C C

with the corresponding velocity and strain

ut =_{_(_l)n I_ _t- _ - 2n___- x)H _t - 2n__..__ x)

n=0

_t 2n_ x) _ t 2n_ x)
+ - T H - T

C C

oo

I [_t x) _t 2n_ x)(_l)n 2n_ + H - --_- +. - _ - -_-

n=l

(equation continued on next page)
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- - T---+ H - _ --+
C " C "

oo

Ux = A--f7 (-1) - T ¢

n=0

2n_ H - T
- - T C C

co

l(_l)n I< t 2nl x> <t 2n_ _] _- - T---+ H _- .
C C

n=l

The velocity and strain distributions for T = _/2c are shown in fig-

ure 20. Notice at the fixed end the way that the velocity changes

directions, and the strain doubles itself. At the free end the

exact opposite occurs; i.e., the strain changes direction in the

same way the velocity did at the fixed end, and the velocity doubles

in the same manner as did the strain at the fixed end. The

displacement is shown in figure 21.
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CHAPTERIV

WaveMotion with CoulombDamping

Thewavemotion with coulombdamping follows the samelaws as

wavemotion without damping, with the exception that the wavemotion

does not continue indefinitely but is dampedout. The difficulty in

analyzing wavemotion with coulombdamping is maintaining the damping

force in the opposite direction to the velocity and at the sametime

having a linear relationship. Onereason for this is that in coulomb

damping, the damping force is not a function of velocity but is a

constant; therefore, when the velocity changesdirection, no non-

linear terms can exist in the damping term which will correspondingly

changedirection.

A. Formulation of WaveEquation with CoulombDamping

Consider the prismatic bar of figure 22. Using Newton's Law,

we obtain

_. Pext = m_,

and substituting the forces from figure 22 yields

_T _2u

-T + T +_x dx + sgn[_] F dx = m _t--_ ,
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where sgn[6] is positive if 6 is positive and negative if 6 is nega-

tive. Sgn[6] is a nonlinear term, and the objective will be to

define a suitable substitute fbr sgn[6] that is linear. This will

not be determined until a particular problem is decided, then depend-

ing on the direction of the velocity, the appropriate substitute will

be used. Since

then

_2U

AE _ dx - pA

_2U

dx_-_= sgn[6] F dx

_2u O _2u = sgn[6] F
_x-_ E _t e A-_ "

Since the wave velocity is defined by

then

c2 E
0

_eu i _2u F

- c--_-_ = sgn[6] A-_ ' (16)

which is the wave equation including coulomb damping.

B. Step Stress Impulse Loading to a Semi-lnfinite Rod

Like the previous chapter, Laplace transform techniques are

used to solve the wave equation, and two initial conditions plus two
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boundary conditions need to be satisfied. The wave equation (16)

must be altered to fit the particular example (see figure 23); i.e.,

the coulombforce per unit length, F, is applied only over the length

of the bar that has motion. Therefore,

_eu i _2u F x
_xe ce _t a = _ H(t - 7). (17)

Taking Laplace transforms and setting the initial conditions to zero,

we obtain

x
I m S

8eU(x,s) s2 F c
_X 2 - C--"/ U(x,s) = _ e (18)

The solution to the homogeneous equation is

s s
-- x - -- x

U c(x,s) = B1 ec + B2e c

To obtain the particular solution, substitute

s
m _ X

c

Uo(x,s ) = Dxe

into the differential equation (18):

s s
_ _ _ X

X S2 C
-2 s De c + D --_ xe

c c _

s s
- mE - -- X

s e c F c

- _ Dxe AEs e

Fc

D = - 2A--_s
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s
m -- X

Fcx c
g (x,s)=

p - _---'_S 2 e

s S
-- x - -- x

U(x,s) = Uc(X,S ) + Up(X,S) = B1 ec + B2 e c

s
m u X

Fcx c
2AEs _ e

The boundary conditions for this example are

u(0,t) = - T__ H(t) or U(0,s) = - T .
AE AEs

As x-_ u(x,t) is bounded or U(x,s) is bounded. Using these

boundary conditions to solve for the constants B 1 and B2, the solu-

tion becomes

s s s
- -- x - -- x - -- x

Fc e c Tc c Fcx c

U(x,s) = - _ e + AEs2 e _ e

Taking the inverse transform yields

u(x,t) r(t-7) - -T 7) H(t-7).

2T
Let xo = ct and c_ = --_ . Then,

F (x + 2C_) H(t - xu = 4A--_ " Xo) (x° x - c ) , (19)

with the corresponding velocity and strain being

ut = FC2A__(c_- Xo) H(t - c)X (20)
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F X

Ux =---2AE (_ - x) H(t - c). (21)

Figure 24 shows the distribution of displacement, strain and velocity.

When ct = 5, all motion ceases and remains static, and the maximum

distance the wave travels down the bar is not dependent on the

characteristics of the bar but on the magnitude of the input force,

T, and the magnitude of the friction force per unit length, F.

Consider the static case where the force T is to the right and

is balanced by Fst_ to the left, where Fst is the static function

force. Since _ is defined as

2T
(_ ----__

F

where F is the dynamic friction force, then

Fst(2T/F) = T

F
F
st 2 "

This demonstrates that the static friction force is half the dynamic

friction force; therefore, when the wave is traveling down the rod

and reaches _, the friction force per unit length reduces from F to

F/2, ins tantaneous ly.

Also of interest in this problem is verifying the conservation

of energy; i.e., the energy into the bar must be equal to the energy

absorbed by the bar plus the energy loss due to friction. The energy

relationship to be satisfied is the following:
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Energy in = Kinetic Energy + Potential Energy + Friction Losses

I i
Tu = _ m_2 + _ K__-+ Fu

Xo _0 Xo

Tu(0,t) = _-@A / ut2 dt +AEJ-_ ua dx +F/x u dt.

O O O

With the appropriate substitutions from equations (19), (20) and

(21), the following results:

TFx TFx

o o - 25)4AE (xo - 25) = 4AE (Xo

This verifies the conservation of energy and partially verifies the

correctness of the solution to this example.

Of further interest is the conservation of momentum; i.e.,

f Pext dt =fm d6

t

/(T - Fct) dt =/ 0A ct d6

O O

with the proper substitution from equation (19) the following

results :

Fct a Fct a
Tt - --= Tt ---

2 2

This verifies the conservation of momentum and also partially veri-

fies the correctness of the solution to this example.
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C. SquareWaveStress Impulse Loading to a Semi-Infinite Rod

This example, unlike the sm_neexampleof the previous section

without coulombdamping, may not be solved in the entirety with one

solution, but this examplemust be subdivided for square waves of

different pulse durations; i.e., T ___/c and T = _/2c which are the

only two square wave durations solvable by this technique. For one

of these cases, a further subdivision of time is required. This will

become apparent as these examples are analyzed. These subdivisions

are required because of the inability to define a friction term which

is all encompassing and, at the same time, is capable of being

iinearized.

i. ___/c

This example is the case where a step stress is applied, and

the wave travels along the rod until all motion ceases. Then at that

time or some later time (depending on the value of T), the step stress

at x = 0 will be released. This example will need to be further sub-

divided: (i) For the time when the wave travels along the rod and

comes to rest (t __ T) and (2) for th_ time after the step stress is

released (t > T).

a. t __ _

This case has already been solved, and it is the step

stress impulse loading of paragraph B of this section.

b. t__

This case begins where the previous case ended; there-

fore, the initial conditions of this case are the final conditiens of
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the previous case. By substituting into equations (19) and (20)

t -- o_c, the initial conditions are obtained; i.e.,

u(x,0+) = F4AE (x - a) 2 H(CZ - x) and ut(x,0+ ) = 0.

Since it is known that the friction force in the static

condition is F/2, and that the stress will be released causing a

wave motion at that point with a velocity in the opposite direction

to its previous motion, then the wave equation may be written as

follows for this example:

_2u I _eu 3F H(t- x F
- _ _-_ = " 2A--_ c ) + _-E H(t) H(_ - x). (22)

Initially, the entire ro_ _ ,Inder the influence of the static fric-

tion force, but as time progresses and wave motion takes place, the

friction force changes direction and doubles its value to meet the

requirements of the wave motion. The boundary conditions at x = 0

has changed from the previous case, because the stress is removed

at x = 0; therefore,

u (0,t) = 0 or U (0,s) = 0.
X X

As x-_ u(x,t) is bounded or U(x,s) is bounded. Taking the

Laplace transform of equation (22), we obtain
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_2U(x,s) se s u(x,0+)+ I
_x_ - c-_U(x,s) + c-_ 7 ut(x'0+)

3F

2AEs

X
m _ S

c
e

F

+ _ H(_ - x).

Substituting the initial conditions, using variation of paralaeters to

obtain the particular solution and using the boundary conditions to

resolve the constants, we obtain the following solution:

xI xu = 4-_ -- (t - c ) + (3xc - 2_c)(t - c ) H(t - c)

+ (x2 - 20_ + 0_) H(t) H((X- x)), (23)

with the corresponding velocity and strain being

F__£_cOct - 2_) H(t - x
ut = 4AE c ) (24)

u
x F< x-- " 4A---_ (3x - 2_) H(t - c) - (2x - 2_) H(t) H(_ - x) . (25)

Figure 25 shows the displacement, velocity and strain distributions.

The velocity is similar to the velocity of the first part of this

example except that all motion ceases at t = 2c_/3c rather than

t = o#c.

An energy check will be applied to this example to

verify that energy is conserved. The @elationship to satisfy is
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Original Potential Energy = Kinetic Energy + Potential Energy

+ Friction Losses

i i i
Kuao = _ m6a+ _ Ku2 + Fu

Substituting from equations (23), (24) and (25) using the proper

forms, we obtain the following:

F2_ F2_
2_E 2_E

This verifies the conservation of energy and partially verifies the

correctness of the solution to this example. The solution maybe

further verified by verifying the conservation of momentum;i.e.,

Pext dt --fm d6

t fi

- _-- +-- dt = 0A c t dfi.

O O

With the appropriate substitution for equation (24), the following

is obtained:

3Fct 2 3Fct a
-Tt +-- = -Tt +--

4 4

This verifies that the solution did obey the law of conservatioa of

mome n tum.
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2. _ = _/2c

Consider the case of the semi-infinite rod with a square

wave stress impulse loading _here the pulse duration is T = _/2c.

This case does not need to be subdivided into two time domains,

because the friction force term can be defined for all time and be

linear at the same time. It was observed when solving this case with

the friction force acting only on the forward velocity wave (i.e.,

only on the region between ct - _ _ x _ ct) that a negative velocity

wave was generated immediately preceding the forward wave. There-

fore, it was necessary to define a friction term which would resist

the negative velocity rear wave as well as the positive velocity

forward wave. This is done in the differential equation below:

The boundary conditions for a semi-infinite rod with a compressive

square wave stress impulse loading are

u(O,t)= T [H(t) H(t.... )]
AE _c "

As x _ _ u(x,t) is bounded. Using these boundary conditions and

zero initial conditions, we obtain the following solution:

X O X O

27+ H - + " --+--+_ _ O_C_

• H 2c " (26)
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Figure 26 shows the distribution of displacement, velocity and strain.

The front velocity wave and the rear velocity wave go to zero at the

same time, t = _/c, and no motion exists after that time. Also, at

t = _/c the strain has no discontinuity; indicating that no motion

will be generated due to strain after that time. The static friction

force per unit length that is required to maintain the strain is

FFst 2 '

which is the sameas that for the first part of the previous example

with the exception that it is in two directions in this case with the

change in direction at x = _/2.

To verify the conservation of energy in this case, the energy

balance must be subdivided into two time zones because of the dif-

ficulty encountered in the required integration. Therefore, for

t ___, the relationship to satisfy is

X 0 Xo X0

o o o
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With the proper substitutions, this results in

x] xo[T2x° - _ 2_2 = 2 .

For t __ T, the relationship to satisfy is

c(t-T) ct c(t-T) ct

= [/ ua dx + 7 a dx] + AE [7 u2 dx +7 u2 dx]T u(0,t) _ t ut -_ x x

o c(t-T) o c(t-T)

c(t-T) ct

+ F [/ u dx + / u dx]

0 c(t-T)

and with the correct substitutions, the following result is obtained:

3T2..__.q_=3Ta.___q
8AE 8AE '

which is a constant, as expected, because in this time zone no

energy has been put into the rod. To verify the conservation of

momentum, the same division in time is required. For t _ T,

t 6

?(T - Fct) dt = f oAct d6

o o

Fcte Fcte
Tt - --= Tt

2 2
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For t -> T

T t t 6

0 _ T 0

+fOA c(t - T) d6.

O

Fct____e = TC_ Fct a
T_ . F_t + 9 _- Fct +--
c . c _9 •

With these verifications of conservation of energy and momentum,

greater confidence in the solution is established.

D. Step Stress Impulse Loading to the Left End

of a Finite Rod with the Right End Free

This example is a rod of _.... u _-+ ha= -_ quppo_tQ _t the

right end and a compressive step stress is applied to the left end.

As the wave traverses the _od, coulomb damping is present to retard

the motion. The boundary conditions for this rod are

u (O,t) = . --T H(t)
x AE

or
T

Ux(0's) = " AE--_

u(I,t) = 0 or U(_,s) = O.

The equation of motion for this case is simply equation (17) which

is also the equation for the semi-infinite rod with a step stress

input, because in both cases the velocity never changes direction.
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With zero initial conditions and

solution to equation (17) is

the above boundary conditions, the

oo

I{IEu = _-f r(xo -

n=O

F
2n_ - x) - _ (xo - 2n_ -

e Fx I
-7

X) - --_ (xO - 2n_ - x) J

• H (t 2n_c

co

x)+7[ <xo
n=l

- 2n£ + x) -_ (xo - 2n£ + x)]

• H (t - --2n£c+9

oo

n=l

2n_ - x) 2 -

+-_ (xo - 2n_ - x) H c '

F_
-_ (xO - 2n_ - x)

with the corresponding velocity and strain being

u t

oo

(I I %] (t 2n_ x)
= c T + nF_ - H +

AE c

n=0

o0

(t 2n£ c) _, FI-_2° (2n21_F£]
• H -_+ + ....

c

n=l

H

OO

t 2n£ x)}C

co

BE = _ C

n=O

oo

n=l

• H (t - _2n_ +_)+_, _2 _ 2x] H (t 2n_c x)} .

n=l

To discover the limitations of these equations, we must re-examine

the differential equation (17). The friction term for t > £/c
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begins to apply beyond the length of the rod. While, in actuality,

this poses no problem, it, nonetheless induces error into the mathe-

matical analysis. To avoid this problem, the above equations will be

limited to t _ _/c, and, in limiting the equations, they may be

simplified to the following:

u=_ (xo- x)+_ (x2-xo2) H(t-_)

c x

ut=2g T- H(t-_)

u x A_. _"

(27)

(28)

(29)

A new differential equation will be solved for t > _/c, viz.

_eu 1 _eu F _-', t.-',
- _" k"-) •

Using the same boundary conditions as before but using end conditions

of previous equations as the initial conditions to this analysis,

i.e.,

u(x, +0) = _ T(_ - x) +_ (x2 - _2) and ut(x , +0) = _ T -- ,

we obtain the following solution:
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[_ x 2 o

u=_ _, +i- + -?-i-

oo

n=O

• H <t - (2n+l)_c

OO

n=0

. F_ ¢..__ 2n- 1 +_] H <t- (2n+l)_ + x)}2 c '

with the corresponding velocity and strain being

(30)

oo

< T Fx Z [ F2-_] < t <2n+l)_ +x>
c o F_ + T - H -

ut =_ 2 2 c

n=O

+2I_-_1_(_-_n:_,___)}.
n=O

1 <. L [ _] < t (2n+l)# -_)Ux= _ T+-_+ T--- H - c +

n=O

+ZI-_+_1.(_-_°:_-_)}.
n=O

(31)

(32)

This solution is further limited in that T must be of sufficient

magnitude that the velocity will never go to zero or negative at any

point; therefore, T __ F_. The distribution of the velocity for

T = F_ is obtained by substituting T = F_ into equations (28) and

(31). For t __ _/c,

[ x_l: F__.__c i - (33)
ut AE
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oo

ut fiAT _ + [1/2]_ - +
c

nffiO

C

nffiO

(34)

Equation (33) time, tl, starts (i.e., t I ffi0) when the step stress is

appl_ed. Equation (34) time, re, starts (i.e., te ffi0) when the wave

has traversed the length of the rod. Therefore, when t I ffi_/c,

t e = 0. Figure 27 is the velocity for T ffiF_. After the wave has

traversed the rod once, the average velocity of the rod is constant

Fc_
(i.e., ut = _); therefore, the rod is traveling at a constant

velocity while the wave motion is taking place. As t approaches 2Z/c,

the velocity of the rod at x = 0 approaches zero, but at t < 21/c, the

velocity is increased by the on-coming wave. Therefore, the velocity

comes very close to zero, but never quite reaches it; this illustrates

that T = F_ is the critical value.

Now, consider a more typical value of T (i.e., T > F_), e.g.,

T ffi2F_. Substituting into equations (27), (28), (29)_ (30), (31),

and (32), results in the following, for t _ _/c,

u
ffiAE _ + _ " 4_2J H(t - _)

I x],Fc___ 2- H(t x
ut ffiAE " c )
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and for t ___/c,

F_ 2 _!Xo 7 2x + x 2

u = A-E--I_-+:- _- _"

co

r3Xoo ._3n32
n=O

oo

H - C " + L_-- 3n - _ + _ H - c +

n=0

= Fc_ x (2n+l) _ +__ o + [3/2] H -
ut AE 2_ c

n--0

+2 [3/2] H (t- (2n+l)Y'" x)}"c

n=0

U = F-_{-2 + x _, (t (2n+l)Ix AE _ + [3/2] H - c

n=0
oo

I (t (-2n+l)_ x)}+ [-3/2] H " c "

n=O

Figure 28 shows the displacement distribution; figure 29, the veloc-

ity; and figure 30, the strain. The velocity and displacement are

ever-increasing, while the strain has set up a cyclic pattern after

the wave has initially traversed the length of the rod, the height

of the discontinuity of the velocity and strain remains the same,

}T " _I" The velocity at the boundaries increases each time by the

discontinuity height upon reflection of the wave.
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CHAPTERV

Friction-lnduced WaveMotion

In this case, two rods are set together in such a manner that

the wave motion in one rod induces wavemotion in the other rod

through friction (see figure 31). It is assumedthat all cross-

sectional planes remain plane, and the displacement is the same

everywhere in the plane. The inducing rod will have a wave propa-

gation velocity of cl, and the induced rod will have a wave propa-

gation velocity of c2. By using equation (17), the equation of

motion becomes(for the induced rod):

_2u I _2u F x.

Since these are semi-infinite rods and the induced rod has no strain

at x = 0, then the boundary conditions for the induced rod are

u(0,t) = 0.

As x _ _ u(x,t) is bounded. Using these boundary conditions and

setting the initial conditions to zero, the solution to the equa-

tion of motion is

%% c__ (t x__)H(t - x x__) x )
_ - c-_),-(t- H(t-
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with the following velocity and strain being

22 }F ClC e _cq x) x) x___) x )ut = AE(c_ - c_) (t- cs H(t- ce - (t- Cl H(t-

Fclc§- {- x__) x__) x__) }= AE-c_(i (t - H(t - + (t - H(t - x) .u x c_ c 2 Cl Cl

To gain an understanding of this example, three cases will be

c___= $; sonic, c__ = I and supe sonic, c_ = 2.examined: subsonic,
c I 2 c I Cl

Figure 32 shows the distribution of displacement, velocity and strain

for these three cases. Observe the similarity in the wave shapes of

the subsonic and supersonic cases, and the difference in the sonic.

In the subsonic case, the wave has propagated twice the distance down

the rod as does the sonic and supersonic case because, in the sub-

sonic case, the limiting factor is the inducing rods velocity, Cl;

and in the sonic and supersonic case, the limiting factor is the

induced wave velocity, c e. The displacement is greater for the cases

in this order: subsonic, sonic and supersonic, because the friction

force is acting over a greater portion of the rod for a longer period

of time in that order. The strain is greater in the same order for

the same reason.
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CHAPTERVI

Fourier Transform Technique

In solving examplessimilar to the ones in this treatise, the

Fourier transform is taken of the axial coordinate variable, x,

rather than the time variable, t, as was the case in Laplace trans-

forms. Instead of having initial conditions as associated with the

Laplace transforms, the strain boundary condition at x = 0 and for

all time is required. The initial conditions are needed to resolve

the constants of integration in the sameway that the boundary condi-

tions were used in Laplace transform technique. Therefore, in solv-

ing these problems, three quantities must be known: (i) Ux(0,t),

(2) u(x,0), and (3) ut(x,O)_ It nowbecomesapparent th_et the

Fourier Lransform is limited to solutions of exampleswith semi-

infinite rods, because there is no way to stipulate the boundary

condition at x > 0.

A. Semi-lnfinite Rodwith a Step Stress Impulse Loading

For a compressive step stress impulse loading, the boundary

condition at x = 0 is a constant; i.e.,

Ux(0,t ) = . T_ H(t)AE

Using the wave equation (2) and taking the Fourier transform yields
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I _2U(p,t) = 0
_pC U(p,t) - Ux(O.t ) - _ _t a

_aU (p, t) cape Tc e
_t 2 + U(p,t) = AE--H(t)

which has a solution of

• T

U(p,t) = B1 elcpt + B2e "icpt + AE--{7 H(t).

Since the initial conditions are zero; i.e.,

u(x, +0) = 0 and ut(x, +0) = O,

U(p, t) = _ pe • (35)

Because it is very difficult to obtain the solution by integration

of the inverse Fourier transform integral and because insufficient

Fourier transform tables are available, the solution will be proved

by taking the Fourier transform of the known correct solution. The

correct solution from chapter III is

Tc x x

u--_f (t -_1 H(t- 7).

Substituting this equation into the transform integral yields
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oO

xU(p,t) = T (ct - x) H(t - c) cos px dx

O

ct ct

f }U(p,t) --_ ct cos px dx - x cos px dx .

O O

Upon completing the indicated operation and some simplification of/
//

terms, we obtain

U(p, t) = _ p2 ,

which is identical to equation (35).

B. Semi-lnfinite Rod with a Square Wave Impulse Loading, T = _/2C

This example must be subdivided into two time d_w,_ins:

t -__Z'2c and t _e_/2c.

For t ___/2c, the boundary condition is

T
u (0,t) = - --
x AE

and the initial conditions are zero. Using these conditions and

equation (17) results in the following:

U(p,t) = _ (i - cos cpt)+ _ cos cpt - Sip3Cpt)_.

(36)
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The correct solution is equation (26) when it is limited to t __a/2c,

1 _- F eat e

u =_-f_Tct - Tx 4 X+ H(t - _).

Taking the Fourier transform of this equation, gives the following

results:

U(p,t) = _i T (i - cos cpt) + _ cos cpt + sin cpt

which is identical to the solution obtained in equation (36).

For t a _/2c, the boundary condition is

u(0,t)= 0

and the initial conditions are the end conditions of the above case;

i,e.,

u(x,O) = --- Tx - l-'g-" + -

ut(x,°) _f -

The differential equation is based on a friction force that already

exists from _/2 to 0 and moves across the rod with the wave, and

a negative friction force to resist the negative rear velocity wave

which follows the forward wave, i.e.,
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_2U I_2U F[ _ ]H(ct+ - x) - 2H(ct- x)

Using the aforementioned boundary and initial conditions, taking

the Fourier transform, and doing much simplification of terms, we

obtain the following solution:

U(p,t) = _ 2 cos cpt - cos pt + - _ 2 cos cpt

-cos _cpt + 2_)] + 2_ [2 sin cpt- sin _cpt +_2)] }. (37)

Again, equation (26) is the correct solution when t is set equal to

t + _/2c, because this solution began when equation (26) was at

OV2c. Therefore, substituting t = t + _c into equation (26) yields

= T _'et _ _- - " Fc_: a F_ct FO_u
• 2 4 4 16

F Fc2t 2
- |T(ct - x) 2[ + _] H(ct- x)}.

Taking the Fourier transform yields

U(p,t) = _ 2 cos cpt- cos pt + " 2-_ 2 cos cpt

- COS _cpt + 2_)] + 2p--_[2 sin cpt- sin _cpt +_)] }

which is identical to equation (37).
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CHAPTER VII

Summary and Conclusions

The applicability of Laplace transforms to aid in solving wave

motion differential equations, excluding damping, was demonstrated

in that many types of boundary conditions were readily solved. For

this wave motion without damping, many interesting characteristics

were exhibited, especially at the boundaries of the rod. Of special

interest are figures 7, ii, 12, 17, 18 and 20. The complexity of

the wave shapes at the boundaries exhibits the details of the wave

motion characteristics, and from these details it becomes apparent

that difficulty will be encountered in defining a friction force

which will always retard the motion and at the same time be linear.

In this treatise the interesting characteristics of wave motion

with coulomb damping occur along the length of the rod and not at

the boundaries. Perhaps the boundaries would have proved to be more

interesting if more complex solutions had been obtained. In all of

these solutions, it was found that the velocity was a function of

time only and not the axial distance except for the sudden change at

the point of discontinuity. The strain was a function of the axial

distance only except for the shifting of the point of discontinuity

with time. The displacement was a function of time and axial

distance.
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For the semi-infinite rod with the step stress impulse loading

and coulombdamping, the maximumdistance that the wavewould pro-

pagate along the rod (_ = 2T/F) was not a function of the charac-

teristics of the rod, but was dependentonly on the magnitude of the

input force and the friction force per unit length. The static

friction force per unit length that existed after all motion ceased

was one-half that of the dynamic. Whenthe step stress was removed,

the maximumdistance the wave propagated was 2_/3. The static

friction force between 0 and 2C_/3was one-fourth the dynamic fric-

tion force, and between 2C_/3and _, it was one-half. For the same

rod with a square wave impulse loading of pulse duration T = _/2c,

all motion ceased at _, and the static friction force was one-half

the dynamic friction force.

For the finite rod with a step stress impulse loading and

coulomb damping, it was fou__ that for T_ = _,_ the average v_1ocity_

_^= the rod was a constant (Fc_/2AE) after the wave has traversed the

rod once while wave motion continued. For T > F_, the velocity con-

tinues to increase while the strain sets up a cyclic behavior.

Once the wave has traversed the rod, the discontinuity height of

the velocity and strain is a constant, IT - _I, and the velocity

at the boundaries is increased by the amount of the discontinuity

height (T - F_) upon reflection of the wave.
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FIG. •
WAVE MOTION FREE BODY DIAGRAM
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